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In recent years, the escalating use of supply chains in process engineering has highlighted the need for efficient
regional resource distribution. Traditionally, supply chains are designed through deterministic optimization
models. However, these models require significant simplifications to mathematically represent the equipment
design in these supply chains because of the complexity and nonlinearity these formulations bring to the
problem, often leading to suboptimal solutions. This work proposes a novel methodology integrating deter-
ministic and metaheuristic optimization techniques to address this challenge comprehensively. By combining
these methods, the approach optimizes supply chain logistics and equipment design, enhancing overall perfor-
mance, cost-efficiency, and sustainability. A case study on the polystyrene supply chain in Mexico demonstrates
the effectiveness of our strategy, showcasing significant economic, environmental, and operational benefits. Two
different schemes were used, a direct separation sequence and an indirect separation sequence. The results show
that the direct separation sequence is better both economically and environmentally, due to the high energy
consumption of the indirect separation. This integrated approach offers a robust mathematical tool for decision-
making, setting a new standard in supply chain optimization.

1. Introduction

In recent years, the utilization of supply chains in process engi-
neering has witnessed a substantial increase, driven by the necessity to
effectively meet the demand for specific resources in particular regions
(Ravindran et al. 2023; Lim et al. 2021). The deployment of these supply
chains has predominantly relied on mathematical programming,
employing deterministic optimization models to identify an optimal
configuration encompassing resources, equipment, suppliers, and the
ultimate destination (Lejarza et al. 2022). However, a notable challenge
encountered in the application of these optimization models is the
simplification inherent in the design of production or generation
equipment for the resources intended for distribution through the pro-
posed supply chains (Pistikopoulos et al. 2021; Emenike and Falcone,
2020). This simplification can introduce complexities in addressing the
presented scenario. Solving the supply chain and the associated tech-
nology design simultaneously is a mathematically complex problem.
This complexity arises from the need to consider numerous variables and

constraints that interact in intricate ways, often resulting in large-scale,
non-linear, and highly constrained optimization problems. Normally,
deterministic mathematical models are created to solve process supply
chains. This is due to the different strategies that can be used to reduce
computing time and relax some mathematical expressions, which helps
to easily find an optimal solution (Gilani et al. 2020).

These strategies include linearization techniques, decomposition
methods, and heuristic algorithms, which, while effective, often neces-
sitate simplifications in the equipment design to make the problem
tractable. As a result, the detailed modeling of equipment performance
and integration within the supply chain may be overlooked or approx-
imated, potentially compromising the accuracy and efficacy of the so-
lution (Garcia and You, 2015). The process of simplifying equipment
design in the context of supply chain optimization involves assumptions
that can lead to suboptimal decisions. For example, standardizing
equipment parameters might ignore specific operational efficiencies or
maintenance requirements that could impact the overall performance of
the supply chain (Sharifnia et al. 2021). However, this solution could be
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a local optimum and not a global optimum, which would be easier to
obtain using a stochastic method. Stochastic methods, which account for
randomness and uncertainty in the modeling process, can provide a
more comprehensive understanding of the supply chain dynamics and
the performance of the associated technologies. By incorporating
probabilistic elements, these methods can explore a wider range of po-
tential solutions, thus increasing the likelihood of identifying a global
optimum. The metaheuristic optimization techniques, incorporated in
this methodology, are particularly adept at navigating complex,
high-dimensional search spaces to find near-optimal solutions that
deterministic methods might miss. For example, genetic algorithms can
simulate the process of natural selection to iteratively improve equip-
ment designs, while simulated annealing can avoid local optimal by
allowing occasional suboptimal moves, thus escaping the potential pit-
falls of traditional optimization methods. Particle swarm optimization,
inspired by social behavior patterns of organisms, can efficiently explore
multiple potential solutions simultaneously, accelerating the conver-
gence to an optimal or near-optimal solution.

Nevertheless, the computational demands of stochastic optimization
are significantly higher, often requiring advanced algorithms and sub-
stantial computational resources to manage the complexity of simulta-
neous supply chain and equipment design optimization (Tolooie et al.
2020). Furthermore, the integration of real-time data and adaptive
learning algorithms can enhance the robustness of these models,
allowing them to dynamically adjust to changing conditions and new
information. This approach can significantly improve the reliability and
resilience of supply chain operations, particularly in environments
characterized by high volatility and uncertainty. However, implement-
ing such sophisticated models poses additional challenges, including the
need for high-quality data, advanced computational infrastructure, and
specialized expertise in both supply chain management and advanced
optimization techniques (Nzeako et al. 2024). Therefore, while the
simplification of equipment design in supply chain models is a common
practice to mitigate computational challenges, it underscores the need
for ongoing research and development of more robust optimization
frameworks that can handle the full complexity of these interdependent
systems without compromising on solution quality. This involves not
only enhancing the mathematical and algorithmic approaches but also
fostering interdisciplinary collaboration to integrate insights from en-
gineering, operations research, computer science, and data analytics. By
advancing these integrated frameworks, it is possible to achieve more
accurate, efficient, and resilient supply chain designs that fully account
for the complexities of both the supply chain and the associated tech-
nologies (Belhadi et al. 2022).

Recent advancements in chemical process engineering, spanning
design, simulation, and optimization, have significantly enhanced the
treatment of supply chains (Gamboa Bernal et al., 2020; Pasha et al.
2021). These advancements have yielded economic, environmental, and
social benefits by reducing production and operational costs
(Martinez-Lomovskoi et al. 2023), minimizing raw material usage,
mitigating environmental emissions (Sanchez-Ramirez et al., 2024),
and generating employment opportunities (Baah et al. 2021;
Nunez-Lopez et al., 2018). For instance, Kamalahmadi et al. (2022)
examined the minimized economic impact of adding flexibility and
redundancy in supply chains, while Hosseini-Motlagh et al. (2020)
analyzed economic objectives for a sustainable electricity supply chain
network design. On the environmental front, Mohtashami et al. (2020)
designed a green supply chain to optimize the reduction of emissions in a
transportation fleet’s network, and Krishnan et al. (2020) proposed an
environmental impact assessment in a food supply chain to improve
environmental sustainability. However, during the formulation of all
these mathematical models, different simplifications have been made,
among them is that during the design and optimization of supply chains,
the design of the operating equipment has always remained fixed
(Duhbaci et al., 2021; Sansana et al. 2021). This is attributed to the
formulation involving a substantial number of equations containing
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highly nonlinear and nonconvex terms, posing challenges for deter-
ministic optimization methods (Danilova et al. 2022), in conjunction
with the difficulty of involving the thermodynamic modeling of this
equipment (Jackson and Grossmann, 2001). A few years ago, process
units were simplistically treated as black boxes in the design, utilizing
deterministic techniques for mathematical model solutions (Li et al.
2024; Subramanian et al. 2021). However, the outcomes deviated
considerably from reality, since the design of this equipment is consid-
ered fixed, and the simplifications made do not consider the variability
of costs that may arise when varying the size of any of the equipment or
the energy consumption required by them. This cost has a great impact
on the total cost of designing a supply chain (Yeomans and Grossmann,
1999).

Consequently, hybrid strategies have been introduced recently,
optimizing process units stochastically and subsequently performing
deterministic supply chain optimization (Dhiman, 2021; Iwendi et al.
2021). Although these strategies yield superior results, the sequential
execution significantly escalates computational time (Huerta-Rosas
et al. 2024; Tinoco-Saenz et al., 2022). Some notable contributions in
hybrid optimization include the following. Dong et al. (2023) proposed a
novel hybrid robust-interval optimization to facilitate flexible and
robust uncertainty planning to reduce operational costs; Resat (2020)
presented a novel solution methodology to design sustainable delivery
systems in urban areas, and Saini et al. (2021) achieved a
multi-objective hybrid machine learning optimization approach for
enhanced cell biomass production. On the other hand, in some of these
works, different simplifications have been made, to relax the mathe-
matical models addressed and to be able to easily solve the bilinear and
non-convex terms that are generated in mathematical programming.
Below are some of the contributions that have been made in this regard.
Spiegler et al. (2016) provided a systematic methodology for the
rigorous analysis and design of nonlinear supply chain dynamics
models, especially when overly simplistic linear relationship assump-
tions are not possible or appropriate. Ponte et al. (2017) showed that in
some works nonlinearity is often significant and should not be ignored,
and You and Grossmann (2008) treated some objectives as parameters to
fix certain values and approximate Pareto’s optimal curves. In addition,
there are works where it is reported that by using these hybrid optimi-
zation strategies it is possible to solve a complex problem. For example,
Hernandez-Perez et al. (2020) proposed a hybrid optimization strategy
that was applied to scheduling of hydraulic fracturing process to obtain
shale gas, Lopez-Flores et al. (2022) presented an approach to interplant
heat integration and thermal engines that considers the equitable allo-
cation of resources among different industrial plants and recently Linan
et al. (2024) proposed a hybrid method for the design of a thermal
system and a sequence of reactive distillation column were an improved
in convergence was obtained.

Despite these advancements, no work has rigorously considered the
design of equipment within a supply chain. Therefore, in this work, a
general hybrid methodology is proposed for the solution of supply
chains, where the deterministic part resolves the distribution of re-
sources, while the rigorous design of the equipment is simultaneously
resolved through metaheuristic optimization. This proposed methodol-
ogy leverages the strengths of both deterministic and stochastic ap-
proaches, aiming to address the limitations of current models. By
integrating metaheuristic techniques, such as Differential Evolution
with a Tabu List (DETL), simulated annealing, or particle swarm opti-
mization, the design process can more accurately reflect real-world
complexities. These techniques allow for the exploration of a broader
solution space, accommodating nonlinearities and nonconvexities that
deterministic methods struggle with.

The novelty and contribution of this work lie in the concurrent
optimization of both the supply chain logistics and the detailed design of
production equipment. This hybrid approach ensures that the design
and operational aspects of the supply chain are optimized concurrently,
leading to more coherent and practical solutions. For instance,
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deterministic optimization can handle the logistical aspects, such as
route planning and resource allocation, while metaheuristic optimiza-
tion can fine-tune the equipment design to enhance efficiency and
reduce environmental impact. By addressing the equipment design
rigorously and in tandem with supply chain optimization, this meth-
odology provides a more integrated and holistic solution, potentially
leading to significant improvements in performance, cost-efficiency, and
sustainability. Moreover, this work introduces a level of flexibility and
robustness previously unattained in supply chain modeling. In addition,
the proposed hybrid methodology can be tailored to various industries
and supply chain structures, making it a versatile tool for a wide range of
applications. This work represents a significant advancement in the field
of supply chain optimization by offering a novel methodology that
bridges the gap between supply chain logistics and equipment design.
The integration of deterministic and metaheuristic optimization tech-
niques not only enhances the precision and applicability of the models
but also sets a new standard for addressing the inherent complexities of
supply chain systems. This hybrid approach promises not only to
improve operational efficiency and reduce costs but also to enhance the
sustainability and resilience of supply chains, making it a critical
development for future research and practical applications in the field.

2. Problem Statement

Traditional optimization methods in supply chain management are
usually based on deterministic models. However, in the mathematical
formulation for solving them, many simplifications are made, which
largely affect the total cost of the supply chain design. One of the main
simplifications made is to assume the design of process equipment as
black boxes, where only one associated cost parameter is assigned per
unit of the desired product.

These types of simplifications are usually made because the rigorous
design of this equipment requires the use of stochastic methods, which
require a high computational time. On the other hand, deterministic
models, while accurate, have difficulty adapting to uncertainties such as
demand variability, fluctuations in delivery times, and supply disrup-
tions (Chen et al. 2023). Moreover, the global nature of supply chains
introduces additional layers of complexity, including multimodal
transportation, diverse regulatory environments, and variable cost
structures. Additionally, in most reported works, the design parameters
of the equipment operating in a supply chain are kept constant
(Grossmann et al. 2005) to avoid resolving high nonlinearities and
non-convex terms. However, the costs associated with equipment design
have a significant impact on the overall solution of a problem, making it
a critical point to consider in the general design of a supply chain
(Hasani et al. 2021; Hernandez-Perez and Ponce-Ortega, 2021). There-
fore, more attention needs to be paid to these factors, which necessitate
a more sophisticated optimization approach that can seamlessly inte-
grate different techniques to leverage their respective strengths in a
single methodology. As shown in Fig. 1, to solve this problem where
both deterministic optimization and stochastic optimization are
required, a program is required that functions as an intermediary be-
tween the two-programming software used, because the programming
language is very different and it is not possible to maintain direct
interaction. Therefore, this paper proposes a general method for solving
supply chains using a hybrid optimization tool, where the variability of
design parameters is considered to be incorporated in the production
and distribution of resources. In this way, the distribution of resources is
optimized sequentially with the design of the equipment, in case there
are any fluctuations in demand, or adjustments required in the process.

3. Methodology
The following general methodology was proposed for the design of

equipment and distribution of resources in a supply chain, where a
hybrid mathematical algorithm (deterministic and metaheuristic) is
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Objective Function
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Simulation Process

Fig. 1. Problem Statement.

presented for process optimization (Fig. 2). The step-by-step meth-
odology (Fig. 3) is listed below:

1. Generation of decision variable values by the metaheuristic optimi-
zation algorithm.

2. Creation of values for the uncertainty parameters in a random value
generator.

3. Send the values of the decision variables using the linking program.

4. Calculation of objective functions by the deterministic optimization
algorithm.

5. Import of objective function values by the linker program.

6. Analysis of the values of the objective functions by the stochastic
optimization algorithm.

The flowsheet starts with rigorous equipment design optimization, a
synergistic approach using a metaheuristic optimization that uses dif-
ferential evolution with a tabu list to find solutions in highly non-convex
problems. For solving this optimization, Aspen Plus and Visual Basic
programming in Excel were employed. Aspen Plus facilitated the ex-
change of decision variables, while Visual Basic handled iterative in-
teractions with metaheuristic algorithms until achieving the desired
objective. Subsequently, the values of the desired variables are extracted
as parameters for the rigorous design of the equipment and are used by
the deterministic optimization program.

Concurrently, deterministic optimization was conducted using the
GAMS (General Algebraic Modeling System) software. This phase aimed
to find the optimal solution for a predefined objective function while
strictly adhering to specified constraints. By utilizing both Aspen Plus
and GAMS, this dual software approach ensured comprehensive opti-
mization of equipment design intricacies and objective fulfillment
within the supply chain framework.

In addition to the differential evolution with a tabu list and the
deterministic programming, the hybrid optimization strategy relies on a
set of routines developed within the same Visual Basic tool. These rou-
tines enable the exchange of information between metaheuristic and
deterministic optimization algorithms, allowing each to address its
respective part of the problem. Additionally, a routine is necessary to
incorporate randomness into the problem by generating uncertain
values for some parameters in the mathematical model. The key routines
in this methodology are as follows:

e Radom values generator: Random values are generated in a Visual
Basic routine to serve as parameters that are typically assumed to be
constant within the mathematical model.

o Linker program code: This is a collection of subroutines that establish
communication between the various platforms involved, facilitating
the transfer and retrieval of data used throughout the optimization
process.
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Fig. 3. Step-by-step methodology for hybrid optimization.

4. Case study

In this section, a case study is presented to show the applicability of
the proposed methodology. The case study represents a mathematical
programming model for a supply chain for the production and distri-
bution of polystyrene in Mexico. However, since it is a general meth-
odology, it can be used to rigorously design any supply chain. It is only
necessary to adjust the model of the required equipment in the stochastic
programming software, as well as the variables and parameters subject
to the distribution of the supply chain to be solved.

In recent years, there has been a large increase in the production of
the plastics industry (Pathak et al. 2023). At a global level, in the year
2000, around 150 million tons of this resource were consumed, while in
2023, around 400 million tons of it were used, almost three times as
many tons of plastic. In Mexico, plastic production is approximately 3.8
million tons per year; however, in 2022 an apparent consumption of 6
tons was reported, so in order to satisfy the demands of this product, it
must be imported from other countries (Angeles-Hurtado et al. 2023).
Among the main plastics used in Mexico are polyethylene, poly-
propylene and polystyrene, applied mainly in the fishing, agricultural,
textile and packaging sectors. However, in Mexico there is a greater
number of processing plants to produce polyethylene and poly-
propylene; therefore, a large amount of the polystyrene used in Mexico
must be imported. Polystyrene is a thermoplastic derived from the
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petrochemical industry; its main uses are in the construction industry
and the food industry. In Mexico, the production and distribution pro-
cess of polystyrene face several problems, from the availability of the
raw material to produce this compound, to the supply chain for its final
distribution throughout the country. In some other countries, studies
have been carried out on polystyrene supply chains, focused on the
distribution of the product and the mitigation of the emissions gener-
ated; however, these studies do not contemplate the simultaneous
design of the used equipment during the optimization supply chain
(Muthukumar et al. 2024; de Souza Junior et al., 2020).

The proposed methodology was implemented for the design and
distribution of a polystyrene production process in México. The 5 most
important polystyrene industries in central Mexico were taken into ac-
count, which have 5 options in this same region to obtain their raw
material, which is styrene, in turn, the styrene industries have 3 plants
where the synthesis and separation of ethylbenzene is carried out.
Table 1 shows the industries used for the case study as well as the
capacity of each of the industries in tons per year and Fig. 4 shows the
geographical location of each of them.

The objective was to satisfy the demand for polystyrene in Mexico,
which is 600,000 tons per year. To produce 1kg of polystyrene,
1.032 kg of styrene are required; and to produce 1 kg of styrene,
1.043 kg of ethylbenzene are needed. Therefore, approximately 646,000
tons of ethylbenzene are required per year to produce the amount of
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Table 1
Mexican industries used polystyrene production and their production capacities in tons per year.
Ethylbenzene Styrene Polystyrene
1 Special Representations HCR Atlanta Quimica Americas Styrenics
(300,000) (200,000) (100,000)
2 Avantar Performance Materials Brenntag Mexico Bulkmatic from Mexico
(250,000) (150,000) (220,000)
3 Mexican Oil Dow Quimica Mexicana Chevron Oil Latin America
(200,000) (170,000) (180,000)
4 Helm from Mexico Resirene
(130,000) (110,000)
5 Mexican Oil Laplex
(110,000) (80,000)

Industries ]
h’ﬂ
kﬂ Ethylbenzene

kﬂ Styrene
h Polystyrene

Fig. 4. Geographical location for considered industries in Mexico.

a) Direct Distillation Sequence

Fig. 5. Considered distillation sequences for separation.
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polystyrene required by the country. The base case considered in this
work is a simplified plant to produce ethylbenzene from ethylene and
benzene. All kinetic and design parameters for this base case were taken
from Luyben (2002). In this particular case, the demand for polystyrene
to be satisfied is a parameter. Therefore, there is no need to generate
random values for the objective functions of the mathematical model in
the deterministic part. However, this methodology can be used with
different supply chains where the objectives are set in different ways.

4.1. Distillation sequences design

For the separation process, two distillation sequences were selected:
a conventional direct sequence (SD) (Fig. 5a) and a conventional in-
direct sequence (SI) (Fig. 5b). These sequences were designed using
Aspen Plus with the DSTW module, leveraging its capability for rigorous
equipment design. The reflux ratios were chosen to be 1.3 times the
minimum values required for efficient separation (A value of 1.3 times
the minimum reflects a common practice in the design of distillation
columns). This increase above the minimum is used to ensure more
efficient and robust separation, considering potential variations in
operating conditions and component properties. Additionally, the
operating pressures were set at 4.5 atm for the first column and 2 atm for
the second column (These pressures are designed to optimize the bal-
ance between separation efficiency and energy consumption, ensuring
that the distillation process operates within economically and environ-
mentally viable parameters). The above parameters were taken as
initialization values for the optimization of the separation column
design mentioned above (Alpuche-Manrique et al. 2011). In summary,
these parameters were selected to optimize the separation efficiency and
operational performance of the distillation columns within the specified
process constraints. Moreover, these design choices ensure robust sep-
aration performance under varying operational conditions and compo-
nent properties, aligning with industry standards for reliable distillation
operations. Therefore, the decision variables considered for the design

Direct Distillation Sequence

Ethylbenzene Industries

L
®
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resolution of this equipment are the stage number, the feed stage, the
column reflux, the column diameter, and the distillate flow.

In the indirect sequence, the feed to the first column is a mixture of
benzene (B), ethylbenzene (EB) and diethylbenzene (DEB), with a molar
composition of 48 %, 46 % and 6 %, respectively. The feed flow is 1738
kmol/h. In the first column, the DEB is separated at the bottoms, while a
mixture of benzene and ethylbenzene is fed to a second column in which
the EB is recovered at the bottoms of the column with a purity of 0.99. In
the direct sequence, there is the same feed flow and the same compo-
sition to the first column, however in this sequence, the benzene goes
overhead, and a mixture of DEB and EB (bottoms product) is fed to the
second column in which ethylbenzene is recovered as a distillate prod-
uct. The optimization of the separation column parameters was obtained
by means of metaheuristic tools, using differential evolution with a tabu
list.

4.2. Supply Chain mathematical programming

For the distribution of polystyrene, the superstructure shown in
Fig. 6 represents the supply chain for this product. Material balances
were carried out for the conversion of ethylbenzene to styrene and
subsequently to polystyrene, and the distribution of these resources
across the different industries involved. These balances were pro-
grammed and solved in the GAMS software with their respective
objective functions and restrictions associated with the model. The
mathematical model is a linear programming model (LP), which was
solved on a computer with a Core i7 processor with a RAM memory of
32 GB. The total computing time for the proposed tool was approxi-
mately 22 hours.

The objectives to be solved for this case study are the minimization of
the total cost of the process (Eq. 1), which consists of the cost of the
distillation equipment plus the cost of processing and distribution of
resources in the supply chain; and the minimization of the environ-
mental impact through the evaluation of Eco indicator 99 (Eq. 2). The

Styrene Industries Polystyrene Industries

off of

Fig. 6. Superstructure for polystyrene production.
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objective functions are listed below:

Min TotalCost = TotalProdCost + TotalDesignCost

Min E199 = Y>> awapy i
b d

keK

(€8]

@

where 4 is the normalization factor for damage in category d, wq is a
weighting factor for damage in category d, Pp represents the total
amount of chemical b released per unit of reference flow due to direct
emissions and opx is the damage caused by category k per unit of
chemical b released to the environment. Table 2 shows the values used
for eco-indicator calculation.

The total cost of the distillation equipment is equal to the operating
costs and the investment costs related to this equipment. These are
calculated through stochastic tools, using genetic algorithms.

To calculate the cost of styrene production (PCsyrene), the sum of the
cost factor (CostStys) associated with each industry by the flow of sty-
rene produced (ProdSty;) in each of those industries was used.

PCiyrene = »_ CostStyProdStys 3)
S
While the cost of styrene production (PCppypenzene) Was calculated
through the cost factor (CostEthyl;) associated with each ethylbenzene
industry by the flow of ethylbenzene (ProdEthyl;;) corresponding to each
of these industries.

PCriytbenzene = ZCostEhylEProdEthylE 4
E
To meet the demand for polystyrene the following equations were
used:

PolystyreneDemand = Polystyrene (5)

where PolystyreneDemand is a parameter of the quantity of polystyrene
that is desired to be produced and Polystyrene is the total flow of poly-
styrene produced by all industries, which must be equal to the required
demand.

To produce 1 kg of polystyrene, 1.032 kg (Factorsyren.) of styrene are
required (ReqSty).

(6)

And to produce 1 kg of styrene, 1.046 kg (Factor.sy) of ethylbenzene
are required (RegEthyl).

ReqSty = FactorgyrencPolystyrene

ReqEthyl = Factors,ReqSty (@]

The total flow of polystyrene, styrene and ethylbenzene used is equal
to the sum of the flow from each of the industries where these com-
pounds are produced.

Polystyrene = ZProdPolyP (€)]
P

Table 2
Parameter values for eco-indicator 99.

Impact category  Steel (points/ Steam (points/ Electricity (points/

kg) kg) kg)

Carcinogenics 6.32E—-03 1.18E—-04 4.36E—-04
Climate change 1.31E-02 1.60E-03 3.61E-06
Ionising radiation ~ 4.51E—04 1.13E-03 8.24E—-04
Ozone depletion 4.55E—-06 2.10E-06 1.21E-04
Respiratory 8.01E-02 7.87E—-07 1.35E-06
effects

Acidification 2.71E-03 1.21E-02 2.81E-04
Ecotoxicity 7.45E—02 2.80E—03 1.67E—04
Land occupation 3.73E-03 8.58E—-05 4.68E—04
Fossil fuels 5.93E—-02 1.25E-02 1.20E-03
Mineral 7.42E—02 8.82E—06 5.70E—06

extraction
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ReqSti = ZProdStys 9
5

ReqEthyl = ZProdEthylE (10)
E
Taking as a restriction the production capacity of each of these in-
dustries, the following equations highlight that the individual flow of
each polystyrene, styrene and ethylbenzene industry cannot be greater
than the individual production capacity of each of the industries.

ProdPoly, < CapPoly, peP 1)
ProdStyy < CapStys seS 12)
ProdEthyl, < CapEthyl, ecE 13)

5. Results and Discussion

The proposed methodology was implemented for the simultaneous
optimization of the equipment design and the supply chain for the
production and distribution of polystyrene in Mexico. illustrate the
Pareto curve for the direct and indirect distillation sequence optimiza-
tion, respectively, showcasing all possible optimal solutions. By utilizing
Pareto curves, a representative scenario was selected for each distilla-
tion sequence (red points in both pareto graphics), striving to balance
economic and environmental objectives.

In a nuanced exploration of the comparative analysis of distillation
sequences (Table 3), Table 4 meticulously outlines the design pa-
rameters, offering a comprehensive perspective on the outcomes
resulting from the application of both conventional direct and indirect
sequences. Notably, the direct sequence stands out by first separating
benzene, the most abundant component, which adds a layer of speci-
ficity to the intricate dynamics of the distillation process. While Table 5
shows the parameters used by the Differential Evolution with a Tabu List
method.

The subsequent scrutiny of the distribution of polystyrene in Mexico
reveals a notable similarity between the two sequences, attributed to the
exclusive reliance on ethylbenzene availability, a factor that remains
consistent at the conclusion of both separation sequences. As the focus
shifts to the economic dimensions, a closer examination of the total cost
and Eco-indicator of the system for each distillation sequence unveils the
direct separation process as the more economically favorable option
(Fig. 7).

Furthermore, the proposed hybrid methodology leverages the
strengths of deterministic and metaheuristic optimization techniques.
By integrating these approaches, the methodology not only enhances the
precision of the equipment design but also improves the overall effi-
ciency and sustainability of the supply chain. The application of meta-
heuristic techniques enables the exploration of a broader solution space,
accommodating nonlinearities and nonconvexities that deterministic
methods struggle with. The comprehensive optimization process in-
volves a detailed analysis of various factors influencing the supply chain,
including production rates, transportation logistics, and distribution
networks. By concurrently optimizing these elements with the equip-
ment design, the methodology ensures a more coherent and practical
solution. This integrated approach also considers fluctuations in demand
and potential adjustments required in the production process, thereby
enhancing the adaptability and resilience of the supply chain.

In addition, the environmental impact assessment forms a crucial
part of the optimization process. The Eco-indicator, used to evaluate the
environmental performance of each distillation sequence, provides
valuable insights into the sustainability of the production and distribu-
tion processes.

By prioritizing scenarios that strike a balance between economic and
environmental objectives, the proposed methodology supports the
development of more sustainable supply chains.
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Table 3 Table 4
Range of parameter searching. Design parameters for conventional distillation.
Type of variable Column 1 Column 2 DS IS
Search Range Stages/feed stage of column 1 49/30 30/15
) Stages/feed stage of column 2 23/11 10/7
gurgbsetr of Stages g%screie ;Fzg 4317;20 Pressure column 1/column 2 (bar) 4.5/2 4.5/2
Re‘; Rag; C‘“tr,e N o110 0210 Reflux ratio 1/reflux ratio 2 0.60/9.33 0.20/8.85
clux Ratlo on {nuos o ol Feed stream flowrate (kmol/h) 1738 1738
Top Rate (kmol/h) Continuos 970-1000 690-700 Distillate flowrate 1 (kmol/h) 978 1668
Diameter (meter) Continuos 0.2-5.0 0.1-5.0 Bottoms flowrate 1 (kmol7h) 760 70
Distillate flowrate 2 (kmol/h) 690 978
. . . . Bottoms flowrate 2 (kmol/h) 70 690
Fig. 9 shows the optimal direct separation sequence, as well as all Reboiler heat duty (Mcal/h) 21172 28,789

the flow streams in the columns and the compositions of each of them. It
can be observed in the distillate of the second column, that a stream of
ethylbenzene (compound of interest for the case study) with a purity of
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Table 5

Differential Evolution with a Tabu List parameters.
Parameter Value
Population size 120
Maximum generations 500
Tabu List 60
Cross Over Probability 0.9
Mutation Probability 0.3
Tabu Radius 0.0001

0.998 is obtained. Fig. 10 shows the flows from the separation columns
for the indirect sequence, wherein the first column diethylbenzene is
obtained from the bottom; and a mixture of mostly benzene and ethyl-
benzene as distillate, which enters a second column where the ethyl-
benzene flow with a purity of 0.997 is obtained from the bottom.

On the other hand, Table 4 shows that most of the variables of in-
terest for the design of the columns, such as the number of stages and the
reflux ratio, are higher for the direct distillation sequence than the in-
direct sequence. However, the reboiler heat duty is higher for the indi-
rect separation case, which indicates that it is a variable that has more

F=1,738 kmol/h
B =973 kmol’/h
EB= 695 kmol/h
DEB = 70 kmol/h
F =760 kmol/h

B =1.141 kmol/h
EB= 688.853 kmol’h

DEB = 70 kmol/h

B=0971.
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weight when calculating the total cost of the equipment design, since the
data show a higher total cost for the indirect separation sequence.

This economic advantage is further accentuated by the intricate
resource interconnection flows between the ethylbenzene, styrene, and
polystyrene industries, meticulously presented in Fig. 11 and . In
Fig. 11, it can be observed that there are 646,826 tons of ethylbenzene
(688 kmol/h), which corresponds to the demand required by Mexico in
recent years. This ethylbenzene can be obtained from both the direct
separation sequence and the indirect separation. Subsequently, there are
3 industries where this component is processed. Ethylbenzene Industries
1 and 3 satisfy 300,000 tons and 200,000 tons, respectively, which
represents the maximum production capacity of these industries, while
Industry 2 processes the remaining 145,826 tons of ethylbenzene
needed.

The mathematical programming code chose the industries that
would operate at their maximum capacity based on the associated costs
of production and transportation.

Table 6 shows the interconnection flows between the ethylbenzene
and styrene industries, whereas Table 7 shows the interconnection
flows between the styrene and polystyrene industries. Notice that the

F =978 kmol/h
858 kmol/h

F =690 kmol’h
B =1.141 kmol/h
EB= 688.85 kmol/h
DEB = 0.007 kmol/h

F =70 kmol/h

B = 1.3x10-12 kmol/h

EB=0.003 kmol/h
DEB = 69.992 kmol/h

Direct Distillation Sequence

Fig. 9. Optimal solution for direct sequence distillation.

C2

F = 1,668 kmol/h

F=1,738 kmol/h
B =973 kmol/h

EB= 695 kmol/h

DEB = 70 kmol/h

-

'

B =972.999 kmol’h
EB=694.747 kmol/h
DEB = 0.286 kmol/h

F =978 kmol’h
B =971.828 kmol’h
EB=6.185 kmol’/h
DEB = 1.9x10-2kmol/h

F = 690 kmol’'h
-—E> B =1.172 kmol/h
EB= 688.561 kmol/h
DEB = 0.267 kmol/h

F =70 kmol/h
B =4.3x10"7 kmol/h
EB= 0.232 kmol/h
DEB = 69.67 kmol/h

Indirect Distillation Sequence

Fig. 10. Optimal solution for indirect sequence distillation.
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Ethylbenzene Industries
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Styrene Industries Polystyrene Industries
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170,000 T
145,826 Ton X on 180,000 Ton
h 130,000 Ton 110,000 Ton
Direct Distillation Sequence
200,000 Ton

110,000 Ton 80,000 Ton

Fig. 11. Production by each of the industries.

Table 6
Tons of ethylbenzene sent to each styrene industry.
Ethylbenzene
1 2 3
Styrene 1 30,000 0 31,746
2 125,000 31,450 0
3 130,000 20,000 27,310
4 0 94,376 41,214
5 15,000 0 99,730
300,000 145,826 200,000
Table 7
Tons of styrene sent to each polystyrene industry.
Styrene
1 2 3 4 5
Polystyrene 1 0 20,000 0 39,200 0
2 35,000 50,000 37,500 0 27,500
3 50,000 50,000 25,000 20,000 25,000
4 0 14,160 70,000 35,780 10,060
5 18,200 0 53,260 18,540 20,000
103,200 134,160 185,760 113,520 82,560

flow of styrene leaving this ethylbenzene is received by these same in-
dustries. This is because 1.043 kg of ethylbenzene is required to produce
1 kg of styrene; the same happens in the polystyrene industries, since
1.032 kg of styrene is required to produce 1 kg of polystyrene.

Likewise, it can be observed that the sum of the polystyrene pro-
duced in the 5 industries is 600,000 tons of this compound, which is
equivalent to the tons required by the country in recent years to satisfy
its needs for this plastic.

Simultaneously, Table 8 provides a comprehensive overview of the
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optimization objectives for the total cost and environmental impact in
both the direct and indirect distillation sequences. Notice that there is a
decrease in both objectives in the direct separation sequence compared
to the indirect sequence. Specifically, the direct distillation sequence
presents a total annual cost that is 6.78 % lower than the indirect sep-
aration sequence, as well as 23.40 % less in the value of the Eco indi-
cator, indicating a significant reduction in emissions. According to the
data shown in Table 8 and the Pareto curves for the direct and indirect
separation sequences, the importance of considering the rigorous design
of the equipment becomes evident, as the cost of the equipment repre-
sents approximately 40 % of the total cost of the supply chain. The
detailed analysis of Table 8 highlights several key insights. Firstly, the
direct distillation sequence not only reduces the total annual cost but
also significantly lowers the environmental impact, demonstrating its
superiority in achieving a balanced optimization between economic and
ecological objectives. The substantial reduction in the Eco indicator
value underscores the potential for considerable environmental benefits,
aligning with contemporary sustainability goals and regulatory
requirements.

While both configurations effectively satisfy the demand for poly-
styrene, the critical distinction lies in the energy supplied, contingent
upon the chosen separation method. Consequently, the production cost
associated with meeting resource demand in each sequence exhibits
noteworthy variations, significantly influencing the economic objective
within the overarching solution.

This divergence is expected to persist and gain complexity with the

Table 8

Values for objectives functions.
Objective function DS 1S
TAC ($US/ Year) 4255,810 4544,570
EI99 (EcoPoints / Year) 19,576,387 24,158,433
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inclusion of additional objectives, such as security indicators or social
aspects, further underscoring the nuanced impact of the separation
approach on the holistic solution and emphasizing the multifaceted
nature of the decision-making process in this intricate system.

Furthermore, the direct distillation sequence’s ability to reduce
emissions significantly positions it as a more sustainable option, crucial
for industries aiming to minimize their carbon footprint. This reduction
in emissions is particularly relevant in the context of increasing global
emphasis on environmental responsibility and sustainability. By
choosing the direct sequence, companies can better align with envi-
ronmental standards and enhance their corporate social responsibility
profiles. Additionally, the implementation of the direct distillation
sequence offers operational advantages beyond cost and environmental
impact. The reduced complexity in the equipment design and operation
can lead to lower maintenance requirements and increased reliability,
thereby enhancing overall process efficiency. These operational benefits
contribute to the long-term viability and competitiveness of the pro-
duction process.

The strategic selection of distillation sequences, as evidenced by the
comprehensive analysis in Table 8, highlights the pivotal role of
equipment design in optimizing supply chain performance. The inclu-
sion of detailed equipment design parameters not only influences the
immediate economic and environmental outcomes but also affects the
long-term strategic decisions related to capacity expansion, technolog-
ical upgrades, and sustainability initiatives. Moreover, the comparative
analysis of the two sequences underscores the necessity of adopting a
holistic optimization approach. By integrating both economic and
environmental objectives, the proposed methodology ensures that sup-
ply chain decisions are robust, resilient, and adaptable to changing
market conditions and regulatory landscapes. This holistic perspective is
essential for addressing the complex interdependencies within supply
chains and for achieving sustainable competitive advantages.

The data presented in Table 8, along with the Pareto curves for the
direct and indirect separation sequences, illustrate the significant ben-
efits of considering rigorous equipment design in supply chain optimi-
zation. The direct distillation sequence emerges as a superior choice,
offering lower costs and reduced environmental impact, while also
enhancing operational efficiency and sustainability. This analysis re-
inforces the importance of a comprehensive and integrated approach to
supply chain optimization, where multiple objectives are simulta-
neously addressed to achieve optimal performance and sustainability in
complex industrial systems.

The main importance when considering this type of combined tools
is to consider the possible variations that occur in the demand of a
supply chain. Because in some works the costs associated with the
equipment required by a supply chain are taken as parameters. When
increasing or decreasing the demand for a resource, the associated cost
of the equipment is usually modified through some mathematical rela-
tionship due to the high computing time required to make these models.
However, this cost has a great impact when considering the total cost of
the process, which is why it is extremely important to consider the
rigorous design of this equipment and through these methodologies,
these adjustments can be made in less time. Just as the rigorous design of
the equipment has a great direct impact on the total cost of the process,
so does the environmental impact associated with the process. In this
case, for the calculation of the eco-indicator 99, the greatest impact is on
the separation of the components of the process flow, due to the large
amount required in the reboiler of the separation columns.

6. Conclusions

This study presents a comprehensive approach to exploit the ad-
vantages of stochastic and deterministic optimization methods in
chemical process engineering for the design of supply chains and process
units. The hybrid integration of these methods aims to effectively miti-
gate their respective limitations. The proposed methodology, illustrated
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through a detailed case study, showcases the precision of modeling
resource distribution in supply chains using deterministic tools, ensuring
accurate allocation and transportation of resources. Including rigorous
equipment design has a great impact on the final solution of supply
chain development, since through the results it can be observed that the
largest part of the final solution to the objectives is numerically provided
by this process equipment.

Concurrently, the rigorous design of equipment for resource gener-
ation is achieved through the incorporation of metaheuristic strategies
known for their proficiency in navigating complex, high-dimensional
search spaces. This enhances the design process by providing innova-
tive and efficient solutions that may be overlooked by traditional
methods.

This integrated methodology not only enhances result reliability but
also addresses computational challenges intrinsic to sequential optimi-
zation approaches. The framework serves as a robust tool for simulta-
neous stochastic optimization of process units and deterministic
optimization of supply chains. Furthermore, this hybrid strategy
emerges as a promising approach for achieving more precise and effi-
cient solutions in complex chemical process engineering scenarios. It
provides engineers and researchers with a robust platform to optimize
process units and supply chains concurrently, ensuring solutions are
theoretically sound and practically feasible. The results show that the
direct separation sequence is better both economically and environ-
mentally than the indirect separation sequence; this is because the in-
direct sequence requires a greater amount of energy in the reboiler to
achieve the required separation, which directly impacts on a higher cost
and a greater impact on the environment. This integrated approach
represents a significant advancement in the field, paving the way for
more sophisticated and effective optimization techniques in chemical
process engineering.
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