
Integrating metaheuristic methods and deterministic strategies for 
optimizing supply chain equipment design in process engineering
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A B S T R A C T

In recent years, the escalating use of supply chains in process engineering has highlighted the need for efficient 
regional resource distribution. Traditionally, supply chains are designed through deterministic optimization 
models. However, these models require significant simplifications to mathematically represent the equipment 
design in these supply chains because of the complexity and nonlinearity these formulations bring to the 
problem, often leading to suboptimal solutions. This work proposes a novel methodology integrating deter
ministic and metaheuristic optimization techniques to address this challenge comprehensively. By combining 
these methods, the approach optimizes supply chain logistics and equipment design, enhancing overall perfor
mance, cost-efficiency, and sustainability. A case study on the polystyrene supply chain in Mexico demonstrates 
the effectiveness of our strategy, showcasing significant economic, environmental, and operational benefits. Two 
different schemes were used, a direct separation sequence and an indirect separation sequence. The results show 
that the direct separation sequence is better both economically and environmentally, due to the high energy 
consumption of the indirect separation. This integrated approach offers a robust mathematical tool for decision- 
making, setting a new standard in supply chain optimization.

1. Introduction

In recent years, the utilization of supply chains in process engi
neering has witnessed a substantial increase, driven by the necessity to 
effectively meet the demand for specific resources in particular regions 
(Ravindran et al. 2023; Lim et al. 2021). The deployment of these supply 
chains has predominantly relied on mathematical programming, 
employing deterministic optimization models to identify an optimal 
configuration encompassing resources, equipment, suppliers, and the 
ultimate destination (Lejarza et al. 2022). However, a notable challenge 
encountered in the application of these optimization models is the 
simplification inherent in the design of production or generation 
equipment for the resources intended for distribution through the pro
posed supply chains (Pistikopoulos et al. 2021; Emenike and Falcone, 
2020). This simplification can introduce complexities in addressing the 
presented scenario. Solving the supply chain and the associated tech
nology design simultaneously is a mathematically complex problem. 
This complexity arises from the need to consider numerous variables and 

constraints that interact in intricate ways, often resulting in large-scale, 
non-linear, and highly constrained optimization problems. Normally, 
deterministic mathematical models are created to solve process supply 
chains. This is due to the different strategies that can be used to reduce 
computing time and relax some mathematical expressions, which helps 
to easily find an optimal solution (Gilani et al. 2020).

These strategies include linearization techniques, decomposition 
methods, and heuristic algorithms, which, while effective, often neces
sitate simplifications in the equipment design to make the problem 
tractable. As a result, the detailed modeling of equipment performance 
and integration within the supply chain may be overlooked or approx
imated, potentially compromising the accuracy and efficacy of the so
lution (Garcia and You, 2015). The process of simplifying equipment 
design in the context of supply chain optimization involves assumptions 
that can lead to suboptimal decisions. For example, standardizing 
equipment parameters might ignore specific operational efficiencies or 
maintenance requirements that could impact the overall performance of 
the supply chain (Sharifnia et al. 2021). However, this solution could be 
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a local optimum and not a global optimum, which would be easier to 
obtain using a stochastic method. Stochastic methods, which account for 
randomness and uncertainty in the modeling process, can provide a 
more comprehensive understanding of the supply chain dynamics and 
the performance of the associated technologies. By incorporating 
probabilistic elements, these methods can explore a wider range of po
tential solutions, thus increasing the likelihood of identifying a global 
optimum. The metaheuristic optimization techniques, incorporated in 
this methodology, are particularly adept at navigating complex, 
high-dimensional search spaces to find near-optimal solutions that 
deterministic methods might miss. For example, genetic algorithms can 
simulate the process of natural selection to iteratively improve equip
ment designs, while simulated annealing can avoid local optimal by 
allowing occasional suboptimal moves, thus escaping the potential pit
falls of traditional optimization methods. Particle swarm optimization, 
inspired by social behavior patterns of organisms, can efficiently explore 
multiple potential solutions simultaneously, accelerating the conver
gence to an optimal or near-optimal solution.

Nevertheless, the computational demands of stochastic optimization 
are significantly higher, often requiring advanced algorithms and sub
stantial computational resources to manage the complexity of simulta
neous supply chain and equipment design optimization (Tolooie et al. 
2020). Furthermore, the integration of real-time data and adaptive 
learning algorithms can enhance the robustness of these models, 
allowing them to dynamically adjust to changing conditions and new 
information. This approach can significantly improve the reliability and 
resilience of supply chain operations, particularly in environments 
characterized by high volatility and uncertainty. However, implement
ing such sophisticated models poses additional challenges, including the 
need for high-quality data, advanced computational infrastructure, and 
specialized expertise in both supply chain management and advanced 
optimization techniques (Nzeako et al. 2024). Therefore, while the 
simplification of equipment design in supply chain models is a common 
practice to mitigate computational challenges, it underscores the need 
for ongoing research and development of more robust optimization 
frameworks that can handle the full complexity of these interdependent 
systems without compromising on solution quality. This involves not 
only enhancing the mathematical and algorithmic approaches but also 
fostering interdisciplinary collaboration to integrate insights from en
gineering, operations research, computer science, and data analytics. By 
advancing these integrated frameworks, it is possible to achieve more 
accurate, efficient, and resilient supply chain designs that fully account 
for the complexities of both the supply chain and the associated tech
nologies (Belhadi et al. 2022).

Recent advancements in chemical process engineering, spanning 
design, simulation, and optimization, have significantly enhanced the 
treatment of supply chains (Gamboa Bernal et al., 2020; Pasha et al. 
2021). These advancements have yielded economic, environmental, and 
social benefits by reducing production and operational costs 
(Martinez-Lomovskoi et al. 2023), minimizing raw material usage, 
mitigating environmental emissions (Sanchez–Ramirez et al., 2024), 
and generating employment opportunities (Baah et al. 2021; 
Nuñez-Lopez et al., 2018). For instance, Kamalahmadi et al. (2022)
examined the minimized economic impact of adding flexibility and 
redundancy in supply chains, while Hosseini-Motlagh et al. (2020)
analyzed economic objectives for a sustainable electricity supply chain 
network design. On the environmental front, Mohtashami et al. (2020)
designed a green supply chain to optimize the reduction of emissions in a 
transportation fleet’s network, and Krishnan et al. (2020) proposed an 
environmental impact assessment in a food supply chain to improve 
environmental sustainability. However, during the formulation of all 
these mathematical models, different simplifications have been made, 
among them is that during the design and optimization of supply chains, 
the design of the operating equipment has always remained fixed 
(Duhbacı et al., 2021; Sansana et al. 2021). This is attributed to the 
formulation involving a substantial number of equations containing 

highly nonlinear and nonconvex terms, posing challenges for deter
ministic optimization methods (Danilova et al. 2022), in conjunction 
with the difficulty of involving the thermodynamic modeling of this 
equipment (Jackson and Grossmann, 2001). A few years ago, process 
units were simplistically treated as black boxes in the design, utilizing 
deterministic techniques for mathematical model solutions (Li et al. 
2024; Subramanian et al. 2021). However, the outcomes deviated 
considerably from reality, since the design of this equipment is consid
ered fixed, and the simplifications made do not consider the variability 
of costs that may arise when varying the size of any of the equipment or 
the energy consumption required by them. This cost has a great impact 
on the total cost of designing a supply chain (Yeomans and Grossmann, 
1999).

Consequently, hybrid strategies have been introduced recently, 
optimizing process units stochastically and subsequently performing 
deterministic supply chain optimization (Dhiman, 2021; Iwendi et al. 
2021). Although these strategies yield superior results, the sequential 
execution significantly escalates computational time (Huerta-Rosas 
et al. 2024; Tinoco–Saenz et al., 2022). Some notable contributions in 
hybrid optimization include the following. Dong et al. (2023) proposed a 
novel hybrid robust-interval optimization to facilitate flexible and 
robust uncertainty planning to reduce operational costs; Resat (2020)
presented a novel solution methodology to design sustainable delivery 
systems in urban areas, and Saini et al. (2021) achieved a 
multi-objective hybrid machine learning optimization approach for 
enhanced cell biomass production. On the other hand, in some of these 
works, different simplifications have been made, to relax the mathe
matical models addressed and to be able to easily solve the bilinear and 
non-convex terms that are generated in mathematical programming. 
Below are some of the contributions that have been made in this regard. 
Spiegler et al. (2016) provided a systematic methodology for the 
rigorous analysis and design of nonlinear supply chain dynamics 
models, especially when overly simplistic linear relationship assump
tions are not possible or appropriate. Ponte et al. (2017) showed that in 
some works nonlinearity is often significant and should not be ignored, 
and You and Grossmann (2008) treated some objectives as parameters to 
fix certain values and approximate Pareto’s optimal curves. In addition, 
there are works where it is reported that by using these hybrid optimi
zation strategies it is possible to solve a complex problem. For example, 
Hernandez-Perez et al. (2020) proposed a hybrid optimization strategy 
that was applied to scheduling of hydraulic fracturing process to obtain 
shale gas, Lopez-Flores et al. (2022) presented an approach to interplant 
heat integration and thermal engines that considers the equitable allo
cation of resources among different industrial plants and recently Liñan 
et al. (2024) proposed a hybrid method for the design of a thermal 
system and a sequence of reactive distillation column were an improved 
in convergence was obtained.

Despite these advancements, no work has rigorously considered the 
design of equipment within a supply chain. Therefore, in this work, a 
general hybrid methodology is proposed for the solution of supply 
chains, where the deterministic part resolves the distribution of re
sources, while the rigorous design of the equipment is simultaneously 
resolved through metaheuristic optimization. This proposed methodol
ogy leverages the strengths of both deterministic and stochastic ap
proaches, aiming to address the limitations of current models. By 
integrating metaheuristic techniques, such as Differential Evolution 
with a Tabu List (DETL), simulated annealing, or particle swarm opti
mization, the design process can more accurately reflect real-world 
complexities. These techniques allow for the exploration of a broader 
solution space, accommodating nonlinearities and nonconvexities that 
deterministic methods struggle with.

The novelty and contribution of this work lie in the concurrent 
optimization of both the supply chain logistics and the detailed design of 
production equipment. This hybrid approach ensures that the design 
and operational aspects of the supply chain are optimized concurrently, 
leading to more coherent and practical solutions. For instance, 
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deterministic optimization can handle the logistical aspects, such as 
route planning and resource allocation, while metaheuristic optimiza
tion can fine-tune the equipment design to enhance efficiency and 
reduce environmental impact. By addressing the equipment design 
rigorously and in tandem with supply chain optimization, this meth
odology provides a more integrated and holistic solution, potentially 
leading to significant improvements in performance, cost-efficiency, and 
sustainability. Moreover, this work introduces a level of flexibility and 
robustness previously unattained in supply chain modeling. In addition, 
the proposed hybrid methodology can be tailored to various industries 
and supply chain structures, making it a versatile tool for a wide range of 
applications. This work represents a significant advancement in the field 
of supply chain optimization by offering a novel methodology that 
bridges the gap between supply chain logistics and equipment design. 
The integration of deterministic and metaheuristic optimization tech
niques not only enhances the precision and applicability of the models 
but also sets a new standard for addressing the inherent complexities of 
supply chain systems. This hybrid approach promises not only to 
improve operational efficiency and reduce costs but also to enhance the 
sustainability and resilience of supply chains, making it a critical 
development for future research and practical applications in the field.

2. Problem Statement

Traditional optimization methods in supply chain management are 
usually based on deterministic models. However, in the mathematical 
formulation for solving them, many simplifications are made, which 
largely affect the total cost of the supply chain design. One of the main 
simplifications made is to assume the design of process equipment as 
black boxes, where only one associated cost parameter is assigned per 
unit of the desired product.

These types of simplifications are usually made because the rigorous 
design of this equipment requires the use of stochastic methods, which 
require a high computational time. On the other hand, deterministic 
models, while accurate, have difficulty adapting to uncertainties such as 
demand variability, fluctuations in delivery times, and supply disrup
tions (Chen et al. 2023). Moreover, the global nature of supply chains 
introduces additional layers of complexity, including multimodal 
transportation, diverse regulatory environments, and variable cost 
structures. Additionally, in most reported works, the design parameters 
of the equipment operating in a supply chain are kept constant 
(Grossmann et al. 2005) to avoid resolving high nonlinearities and 
non-convex terms. However, the costs associated with equipment design 
have a significant impact on the overall solution of a problem, making it 
a critical point to consider in the general design of a supply chain 
(Hasani et al. 2021; Hernandez-Perez and Ponce-Ortega, 2021). There
fore, more attention needs to be paid to these factors, which necessitate 
a more sophisticated optimization approach that can seamlessly inte
grate different techniques to leverage their respective strengths in a 
single methodology. As shown in Fig. 1, to solve this problem where 
both deterministic optimization and stochastic optimization are 
required, a program is required that functions as an intermediary be
tween the two-programming software used, because the programming 
language is very different and it is not possible to maintain direct 
interaction. Therefore, this paper proposes a general method for solving 
supply chains using a hybrid optimization tool, where the variability of 
design parameters is considered to be incorporated in the production 
and distribution of resources. In this way, the distribution of resources is 
optimized sequentially with the design of the equipment, in case there 
are any fluctuations in demand, or adjustments required in the process.

3. Methodology

The following general methodology was proposed for the design of 
equipment and distribution of resources in a supply chain, where a 
hybrid mathematical algorithm (deterministic and metaheuristic) is 

presented for process optimization (Fig. 2). The step-by-step meth
odology (Fig. 3) is listed below: 

1. Generation of decision variable values by the metaheuristic optimi
zation algorithm.

2. Creation of values for the uncertainty parameters in a random value 
generator.

3. Send the values of the decision variables using the linking program.
4. Calculation of objective functions by the deterministic optimization 

algorithm.
5. Import of objective function values by the linker program.
6. Analysis of the values of the objective functions by the stochastic 

optimization algorithm.

The flowsheet starts with rigorous equipment design optimization, a 
synergistic approach using a metaheuristic optimization that uses dif
ferential evolution with a tabu list to find solutions in highly non-convex 
problems. For solving this optimization, Aspen Plus and Visual Basic 
programming in Excel were employed. Aspen Plus facilitated the ex
change of decision variables, while Visual Basic handled iterative in
teractions with metaheuristic algorithms until achieving the desired 
objective. Subsequently, the values of the desired variables are extracted 
as parameters for the rigorous design of the equipment and are used by 
the deterministic optimization program.

Concurrently, deterministic optimization was conducted using the 
GAMS (General Algebraic Modeling System) software. This phase aimed 
to find the optimal solution for a predefined objective function while 
strictly adhering to specified constraints. By utilizing both Aspen Plus 
and GAMS, this dual software approach ensured comprehensive opti
mization of equipment design intricacies and objective fulfillment 
within the supply chain framework.

In addition to the differential evolution with a tabu list and the 
deterministic programming, the hybrid optimization strategy relies on a 
set of routines developed within the same Visual Basic tool. These rou
tines enable the exchange of information between metaheuristic and 
deterministic optimization algorithms, allowing each to address its 
respective part of the problem. Additionally, a routine is necessary to 
incorporate randomness into the problem by generating uncertain 
values for some parameters in the mathematical model. The key routines 
in this methodology are as follows: 

• Radom values generator: Random values are generated in a Visual 
Basic routine to serve as parameters that are typically assumed to be 
constant within the mathematical model.

• Linker program code: This is a collection of subroutines that establish 
communication between the various platforms involved, facilitating 
the transfer and retrieval of data used throughout the optimization 
process.

Optimization
(supply Chain)

Equipment
Design

MS Excel

Aspen
Plus

Simulator
Control (Linking

programs)

GAMS

Objective Function
Evaluation

Simulation Process

Iteration Random Values
Feed Values

Decision Variables

Response variables

Fig. 1. Problem Statement.
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4. Case study

In this section, a case study is presented to show the applicability of 
the proposed methodology. The case study represents a mathematical 
programming model for a supply chain for the production and distri
bution of polystyrene in Mexico. However, since it is a general meth
odology, it can be used to rigorously design any supply chain. It is only 
necessary to adjust the model of the required equipment in the stochastic 
programming software, as well as the variables and parameters subject 
to the distribution of the supply chain to be solved.

In recent years, there has been a large increase in the production of 
the plastics industry (Pathak et al. 2023). At a global level, in the year 
2000, around 150 million tons of this resource were consumed, while in 
2023, around 400 million tons of it were used, almost three times as 
many tons of plastic. In Mexico, plastic production is approximately 3.8 
million tons per year; however, in 2022 an apparent consumption of 6 
tons was reported, so in order to satisfy the demands of this product, it 
must be imported from other countries (Angeles-Hurtado et al. 2023). 
Among the main plastics used in Mexico are polyethylene, poly
propylene and polystyrene, applied mainly in the fishing, agricultural, 
textile and packaging sectors. However, in Mexico there is a greater 
number of processing plants to produce polyethylene and poly
propylene; therefore, a large amount of the polystyrene used in Mexico 
must be imported. Polystyrene is a thermoplastic derived from the 

petrochemical industry; its main uses are in the construction industry 
and the food industry. In Mexico, the production and distribution pro
cess of polystyrene face several problems, from the availability of the 
raw material to produce this compound, to the supply chain for its final 
distribution throughout the country. In some other countries, studies 
have been carried out on polystyrene supply chains, focused on the 
distribution of the product and the mitigation of the emissions gener
ated; however, these studies do not contemplate the simultaneous 
design of the used equipment during the optimization supply chain 
(Muthukumar et al. 2024; de Souza Junior et al., 2020).

The proposed methodology was implemented for the design and 
distribution of a polystyrene production process in México. The 5 most 
important polystyrene industries in central Mexico were taken into ac
count, which have 5 options in this same region to obtain their raw 
material, which is styrene, in turn, the styrene industries have 3 plants 
where the synthesis and separation of ethylbenzene is carried out. 
Table 1 shows the industries used for the case study as well as the 
capacity of each of the industries in tons per year and Fig. 4 shows the 
geographical location of each of them.

The objective was to satisfy the demand for polystyrene in Mexico, 
which is 600,000 tons per year. To produce 1 kg of polystyrene, 
1.032 kg of styrene are required; and to produce 1 kg of styrene, 
1.043 kg of ethylbenzene are needed. Therefore, approximately 646,000 
tons of ethylbenzene are required per year to produce the amount of 

Fig. 2. Proposed methodology for hybrid optimization.

Fig. 3. Step-by-step methodology for hybrid optimization.
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Table 1 
Mexican industries used polystyrene production and their production capacities in tons per year.

Ethylbenzene Styrene Polystyrene

1 Special Representations HCR 
(300,000)

Atlanta Quimica 
(200,000)

Americas Styrenics 
(100,000)

2 Avantar Performance Materials 
(250,000)

Brenntag Mexico 
(150,000)

Bulkmatic from Mexico 
(220,000)

3 Mexican Oil 
(200,000)

Dow Quimica Mexicana 
(170,000)

Chevron Oil Latin America 
(180,000)

4 Helm from Mexico 
(130,000)

Resirene 
(110,000)

5 Mexican Oil 
(110,000)

Laplex 
(80,000)

Fig. 4. Geographical location for considered industries in Mexico.

Fig. 5. Considered distillation sequences for separation.
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polystyrene required by the country. The base case considered in this 
work is a simplified plant to produce ethylbenzene from ethylene and 
benzene. All kinetic and design parameters for this base case were taken 
from Luyben (2002). In this particular case, the demand for polystyrene 
to be satisfied is a parameter. Therefore, there is no need to generate 
random values for the objective functions of the mathematical model in 
the deterministic part. However, this methodology can be used with 
different supply chains where the objectives are set in different ways.

4.1. Distillation sequences design

For the separation process, two distillation sequences were selected: 
a conventional direct sequence (SD) (Fig. 5a) and a conventional in
direct sequence (SI) (Fig. 5b). These sequences were designed using 
Aspen Plus with the DSTW module, leveraging its capability for rigorous 
equipment design. The reflux ratios were chosen to be 1.3 times the 
minimum values required for efficient separation (A value of 1.3 times 
the minimum reflects a common practice in the design of distillation 
columns). This increase above the minimum is used to ensure more 
efficient and robust separation, considering potential variations in 
operating conditions and component properties. Additionally, the 
operating pressures were set at 4.5 atm for the first column and 2 atm for 
the second column (These pressures are designed to optimize the bal
ance between separation efficiency and energy consumption, ensuring 
that the distillation process operates within economically and environ
mentally viable parameters). The above parameters were taken as 
initialization values for the optimization of the separation column 
design mentioned above (Alpuche-Manrique et al. 2011). In summary, 
these parameters were selected to optimize the separation efficiency and 
operational performance of the distillation columns within the specified 
process constraints. Moreover, these design choices ensure robust sep
aration performance under varying operational conditions and compo
nent properties, aligning with industry standards for reliable distillation 
operations. Therefore, the decision variables considered for the design 

resolution of this equipment are the stage number, the feed stage, the 
column reflux, the column diameter, and the distillate flow.

In the indirect sequence, the feed to the first column is a mixture of 
benzene (B), ethylbenzene (EB) and diethylbenzene (DEB), with a molar 
composition of 48 %, 46 % and 6 %, respectively. The feed flow is 1738 
kmol/h. In the first column, the DEB is separated at the bottoms, while a 
mixture of benzene and ethylbenzene is fed to a second column in which 
the EB is recovered at the bottoms of the column with a purity of 0.99. In 
the direct sequence, there is the same feed flow and the same compo
sition to the first column, however in this sequence, the benzene goes 
overhead, and a mixture of DEB and EB (bottoms product) is fed to the 
second column in which ethylbenzene is recovered as a distillate prod
uct. The optimization of the separation column parameters was obtained 
by means of metaheuristic tools, using differential evolution with a tabu 
list.

4.2. Supply Chain mathematical programming

For the distribution of polystyrene, the superstructure shown in 
Fig. 6 represents the supply chain for this product. Material balances 
were carried out for the conversion of ethylbenzene to styrene and 
subsequently to polystyrene, and the distribution of these resources 
across the different industries involved. These balances were pro
grammed and solved in the GAMS software with their respective 
objective functions and restrictions associated with the model. The 
mathematical model is a linear programming model (LP), which was 
solved on a computer with a Core i7 processor with a RAM memory of 
32 GB. The total computing time for the proposed tool was approxi
mately 22 hours.

The objectives to be solved for this case study are the minimization of 
the total cost of the process (Eq. 1), which consists of the cost of the 
distillation equipment plus the cost of processing and distribution of 
resources in the supply chain; and the minimization of the environ
mental impact through the evaluation of Eco indicator 99 (Eq. 2). The 

Fig. 6. Superstructure for polystyrene production.
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objective functions are listed below: 

Min TotalCost = TotalProdCost+TotalDesignCost (1) 

Min EI99 =
∑

b

∑

d

∑

k∈K
δdωdβbαb,k (2) 

where δd is the normalization factor for damage in category d, ωd is a 
weighting factor for damage in category d, βb represents the total 
amount of chemical b released per unit of reference flow due to direct 
emissions and αb,k is the damage caused by category k per unit of 
chemical b released to the environment. Table 2 shows the values used 
for eco-indicator calculation.

The total cost of the distillation equipment is equal to the operating 
costs and the investment costs related to this equipment. These are 
calculated through stochastic tools, using genetic algorithms.

To calculate the cost of styrene production (PCStyrene), the sum of the 
cost factor (CostStyS) associated with each industry by the flow of sty
rene produced (ProdStyS) in each of those industries was used. 

PCStyrene =
∑

S
CostStySProdStyS (3) 

While the cost of styrene production (PCEhylbenzene) was calculated 
through the cost factor (CostEthylE) associated with each ethylbenzene 
industry by the flow of ethylbenzene (ProdEthylE) corresponding to each 
of these industries. 

PCEthylbenzene =
∑

E
CostEhylEProdEthylE (4) 

To meet the demand for polystyrene the following equations were 
used: 

PolystyreneDemand = Polystyrene (5) 

where PolystyreneDemand is a parameter of the quantity of polystyrene 
that is desired to be produced and Polystyrene is the total flow of poly
styrene produced by all industries, which must be equal to the required 
demand.

To produce 1 kg of polystyrene, 1.032 kg (Factorstyrene) of styrene are 
required (ReqSty). 

ReqSty = FactorstyrenePolystyrene (6) 

And to produce 1 kg of styrene, 1.046 kg (Factorethyl) of ethylbenzene 
are required (ReqEthyl). 

ReqEthyl = FactorethylReqSty (7) 

The total flow of polystyrene, styrene and ethylbenzene used is equal 
to the sum of the flow from each of the industries where these com
pounds are produced. 

Polystyrene =
∑

P
ProdPolyP (8) 

ReqSti =
∑

S
ProdStyS (9) 

ReqEthyl =
∑

E
ProdEthylE (10) 

Taking as a restriction the production capacity of each of these in
dustries, the following equations highlight that the individual flow of 
each polystyrene, styrene and ethylbenzene industry cannot be greater 
than the individual production capacity of each of the industries. 

ProdPolyP ≤ CapPolyP pϵP (11) 

ProdStyS ≤ CapStyS sϵS (12) 

ProdEthylE ≤ CapEthylE eϵE (13) 

5. Results and Discussion

The proposed methodology was implemented for the simultaneous 
optimization of the equipment design and the supply chain for the 
production and distribution of polystyrene in Mexico.  illustrate the 
Pareto curve for the direct and indirect distillation sequence optimiza
tion, respectively, showcasing all possible optimal solutions. By utilizing 
Pareto curves, a representative scenario was selected for each distilla
tion sequence (red points in both pareto graphics), striving to balance 
economic and environmental objectives.

In a nuanced exploration of the comparative analysis of distillation 
sequences (Table 3), Table 4 meticulously outlines the design pa
rameters, offering a comprehensive perspective on the outcomes 
resulting from the application of both conventional direct and indirect 
sequences. Notably, the direct sequence stands out by first separating 
benzene, the most abundant component, which adds a layer of speci
ficity to the intricate dynamics of the distillation process. While Table 5
shows the parameters used by the Differential Evolution with a Tabu List 
method.

The subsequent scrutiny of the distribution of polystyrene in Mexico 
reveals a notable similarity between the two sequences, attributed to the 
exclusive reliance on ethylbenzene availability, a factor that remains 
consistent at the conclusion of both separation sequences. As the focus 
shifts to the economic dimensions, a closer examination of the total cost 
and Eco-indicator of the system for each distillation sequence unveils the 
direct separation process as the more economically favorable option 
(Fig. 7).

Furthermore, the proposed hybrid methodology leverages the 
strengths of deterministic and metaheuristic optimization techniques. 
By integrating these approaches, the methodology not only enhances the 
precision of the equipment design but also improves the overall effi
ciency and sustainability of the supply chain. The application of meta
heuristic techniques enables the exploration of a broader solution space, 
accommodating nonlinearities and nonconvexities that deterministic 
methods struggle with. The comprehensive optimization process in
volves a detailed analysis of various factors influencing the supply chain, 
including production rates, transportation logistics, and distribution 
networks. By concurrently optimizing these elements with the equip
ment design, the methodology ensures a more coherent and practical 
solution. This integrated approach also considers fluctuations in demand 
and potential adjustments required in the production process, thereby 
enhancing the adaptability and resilience of the supply chain.

In addition, the environmental impact assessment forms a crucial 
part of the optimization process. The Eco-indicator, used to evaluate the 
environmental performance of each distillation sequence, provides 
valuable insights into the sustainability of the production and distribu
tion processes.

By prioritizing scenarios that strike a balance between economic and 
environmental objectives, the proposed methodology supports the 
development of more sustainable supply chains.

Table 2 
Parameter values for eco-indicator 99.

Impact category Steel (points/ 
kg)

Steam (points/ 
kg)

Electricity (points/ 
kg)

Carcinogenics 6.32E− 03 1.18E− 04 4.36E− 04
Climate change 1.31E− 02 1.60E− 03 3.61E− 06
Ionising radiation 4.51E− 04 1.13E− 03 8.24E− 04
Ozone depletion 4.55E− 06 2.10E− 06 1.21E− 04
Respiratory 
effects

8.01E− 02 7.87E− 07 1.35E− 06

Acidification 2.71E− 03 1.21E− 02 2.81E− 04
Ecotoxicity 7.45E− 02 2.80E− 03 1.67E− 04
Land occupation 3.73E− 03 8.58E− 05 4.68E− 04
Fossil fuels 5.93E− 02 1.25E− 02 1.20E− 03
Mineral 
extraction

7.42E− 02 8.82E− 06 5.70E− 06
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Fig. 9 shows the optimal direct separation sequence, as well as all 
the flow streams in the columns and the compositions of each of them. It 
can be observed in the distillate of the second column, that a stream of 
ethylbenzene (compound of interest for the case study) with a purity of 

Fig. 7. Optimization for direct distillation sequence.

Fig. 8. Optimization for indirect distillation sequence.

Table 3 
Range of parameter searching.

Type of variable Column 1 Column 2

Search Range

Number of Stages Discrete 4–50 3–100
Feed Stage Discrete 5–49 4–99
Relux Ratio Continuos 0.1–10 0.2–10
Top Rate (kmol/h) Continuos 970–1000 690–700
Diameter (meter) Continuos 0.2–5.0 0.1–5.0

Table 4 
Design parameters for conventional distillation.

DS IS

Stages/feed stage of column 1 49/30 30/15
Stages/feed stage of column 2 23/11 10/7
Pressure column 1/column 2 (bar) 4.5/2 4.5/2
Reflux ratio 1/reflux ratio 2 0.60/9.33 0.20/8.85
Feed stream flowrate (kmol/h) 1738 1738
Distillate flowrate 1 (kmol/h) 978 1668
Bottoms flowrate 1 (kmol7h) 760 70
Distillate flowrate 2 (kmol/h) 690 978
Bottoms flowrate 2 (kmol/h) 70 690
Reboiler heat duty (Mcal/h) 21,172 28,789
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0.998 is obtained. Fig. 10 shows the flows from the separation columns 
for the indirect sequence, wherein the first column diethylbenzene is 
obtained from the bottom; and a mixture of mostly benzene and ethyl
benzene as distillate, which enters a second column where the ethyl
benzene flow with a purity of 0.997 is obtained from the bottom.

On the other hand, Table 4 shows that most of the variables of in
terest for the design of the columns, such as the number of stages and the 
reflux ratio, are higher for the direct distillation sequence than the in
direct sequence. However, the reboiler heat duty is higher for the indi
rect separation case, which indicates that it is a variable that has more 

weight when calculating the total cost of the equipment design, since the 
data show a higher total cost for the indirect separation sequence.

This economic advantage is further accentuated by the intricate 
resource interconnection flows between the ethylbenzene, styrene, and 
polystyrene industries, meticulously presented in Fig. 11 and . In 
Fig. 11, it can be observed that there are 646,826 tons of ethylbenzene 
(688 kmol/h), which corresponds to the demand required by Mexico in 
recent years. This ethylbenzene can be obtained from both the direct 
separation sequence and the indirect separation. Subsequently, there are 
3 industries where this component is processed. Ethylbenzene Industries 
1 and 3 satisfy 300,000 tons and 200,000 tons, respectively, which 
represents the maximum production capacity of these industries, while 
Industry 2 processes the remaining 145,826 tons of ethylbenzene 
needed.

The mathematical programming code chose the industries that 
would operate at their maximum capacity based on the associated costs 
of production and transportation.

Table 6 shows the interconnection flows between the ethylbenzene 
and styrene industries, whereas Table 7 shows the interconnection 
flows between the styrene and polystyrene industries. Notice that the 

Table 5 
Differential Evolution with a Tabu List parameters.

Parameter Value

Population size 120
Maximum generations 500
Tabu List 60
Cross Over Probability 0.9
Mutation Probability 0.3
Tabu Radius 0.0001

Fig. 9. Optimal solution for direct sequence distillation.

Fig. 10. Optimal solution for indirect sequence distillation.
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flow of styrene leaving this ethylbenzene is received by these same in
dustries. This is because 1.043 kg of ethylbenzene is required to produce 
1 kg of styrene; the same happens in the polystyrene industries, since 
1.032 kg of styrene is required to produce 1 kg of polystyrene.

Likewise, it can be observed that the sum of the polystyrene pro
duced in the 5 industries is 600,000 tons of this compound, which is 
equivalent to the tons required by the country in recent years to satisfy 
its needs for this plastic.

Simultaneously, Table 8 provides a comprehensive overview of the 

optimization objectives for the total cost and environmental impact in 
both the direct and indirect distillation sequences. Notice that there is a 
decrease in both objectives in the direct separation sequence compared 
to the indirect sequence. Specifically, the direct distillation sequence 
presents a total annual cost that is 6.78 % lower than the indirect sep
aration sequence, as well as 23.40 % less in the value of the Eco indi
cator, indicating a significant reduction in emissions. According to the 
data shown in Table 8 and the Pareto curves for the direct and indirect 
separation sequences, the importance of considering the rigorous design 
of the equipment becomes evident, as the cost of the equipment repre
sents approximately 40 % of the total cost of the supply chain. The 
detailed analysis of Table 8 highlights several key insights. Firstly, the 
direct distillation sequence not only reduces the total annual cost but 
also significantly lowers the environmental impact, demonstrating its 
superiority in achieving a balanced optimization between economic and 
ecological objectives. The substantial reduction in the Eco indicator 
value underscores the potential for considerable environmental benefits, 
aligning with contemporary sustainability goals and regulatory 
requirements.

While both configurations effectively satisfy the demand for poly
styrene, the critical distinction lies in the energy supplied, contingent 
upon the chosen separation method. Consequently, the production cost 
associated with meeting resource demand in each sequence exhibits 
noteworthy variations, significantly influencing the economic objective 
within the overarching solution.

This divergence is expected to persist and gain complexity with the 

Fig. 11. Production by each of the industries.

Table 6 
Tons of ethylbenzene sent to each styrene industry.

Ethylbenzene

1 2 3

Styrene 1 30,000 0 31,746
2 125,000 31,450 0
3 130,000 20,000 27,310
4 0 94,376 41,214
5 15,000 0 99,730

​ 300,000 145,826 200,000

Table 7 
Tons of styrene sent to each polystyrene industry.

Styrene

1 2 3 4 5

Polystyrene 1 0 20,000 0 39,200 0
2 35,000 50,000 37,500 0 27,500
3 50,000 50,000 25,000 20,000 25,000
4 0 14,160 70,000 35,780 10,060
5 18,200 0 53,260 18,540 20,000

​ 103,200 134,160 185,760 113,520 82,560

Table 8 
Values for objectives functions.

Objective function DS IS

TAC ($US/ Year) 4255,810 4544,570
EI99 (EcoPoints / Year) 19,576,387 24,158,433
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inclusion of additional objectives, such as security indicators or social 
aspects, further underscoring the nuanced impact of the separation 
approach on the holistic solution and emphasizing the multifaceted 
nature of the decision-making process in this intricate system.

Furthermore, the direct distillation sequence’s ability to reduce 
emissions significantly positions it as a more sustainable option, crucial 
for industries aiming to minimize their carbon footprint. This reduction 
in emissions is particularly relevant in the context of increasing global 
emphasis on environmental responsibility and sustainability. By 
choosing the direct sequence, companies can better align with envi
ronmental standards and enhance their corporate social responsibility 
profiles. Additionally, the implementation of the direct distillation 
sequence offers operational advantages beyond cost and environmental 
impact. The reduced complexity in the equipment design and operation 
can lead to lower maintenance requirements and increased reliability, 
thereby enhancing overall process efficiency. These operational benefits 
contribute to the long-term viability and competitiveness of the pro
duction process.

The strategic selection of distillation sequences, as evidenced by the 
comprehensive analysis in Table 8, highlights the pivotal role of 
equipment design in optimizing supply chain performance. The inclu
sion of detailed equipment design parameters not only influences the 
immediate economic and environmental outcomes but also affects the 
long-term strategic decisions related to capacity expansion, technolog
ical upgrades, and sustainability initiatives. Moreover, the comparative 
analysis of the two sequences underscores the necessity of adopting a 
holistic optimization approach. By integrating both economic and 
environmental objectives, the proposed methodology ensures that sup
ply chain decisions are robust, resilient, and adaptable to changing 
market conditions and regulatory landscapes. This holistic perspective is 
essential for addressing the complex interdependencies within supply 
chains and for achieving sustainable competitive advantages.

The data presented in Table 8, along with the Pareto curves for the 
direct and indirect separation sequences, illustrate the significant ben
efits of considering rigorous equipment design in supply chain optimi
zation. The direct distillation sequence emerges as a superior choice, 
offering lower costs and reduced environmental impact, while also 
enhancing operational efficiency and sustainability. This analysis re
inforces the importance of a comprehensive and integrated approach to 
supply chain optimization, where multiple objectives are simulta
neously addressed to achieve optimal performance and sustainability in 
complex industrial systems.

The main importance when considering this type of combined tools 
is to consider the possible variations that occur in the demand of a 
supply chain. Because in some works the costs associated with the 
equipment required by a supply chain are taken as parameters. When 
increasing or decreasing the demand for a resource, the associated cost 
of the equipment is usually modified through some mathematical rela
tionship due to the high computing time required to make these models. 
However, this cost has a great impact when considering the total cost of 
the process, which is why it is extremely important to consider the 
rigorous design of this equipment and through these methodologies, 
these adjustments can be made in less time. Just as the rigorous design of 
the equipment has a great direct impact on the total cost of the process, 
so does the environmental impact associated with the process. In this 
case, for the calculation of the eco-indicator 99, the greatest impact is on 
the separation of the components of the process flow, due to the large 
amount required in the reboiler of the separation columns.

6. Conclusions

This study presents a comprehensive approach to exploit the ad
vantages of stochastic and deterministic optimization methods in 
chemical process engineering for the design of supply chains and process 
units. The hybrid integration of these methods aims to effectively miti
gate their respective limitations. The proposed methodology, illustrated 

through a detailed case study, showcases the precision of modeling 
resource distribution in supply chains using deterministic tools, ensuring 
accurate allocation and transportation of resources. Including rigorous 
equipment design has a great impact on the final solution of supply 
chain development, since through the results it can be observed that the 
largest part of the final solution to the objectives is numerically provided 
by this process equipment.

Concurrently, the rigorous design of equipment for resource gener
ation is achieved through the incorporation of metaheuristic strategies 
known for their proficiency in navigating complex, high-dimensional 
search spaces. This enhances the design process by providing innova
tive and efficient solutions that may be overlooked by traditional 
methods.

This integrated methodology not only enhances result reliability but 
also addresses computational challenges intrinsic to sequential optimi
zation approaches. The framework serves as a robust tool for simulta
neous stochastic optimization of process units and deterministic 
optimization of supply chains. Furthermore, this hybrid strategy 
emerges as a promising approach for achieving more precise and effi
cient solutions in complex chemical process engineering scenarios. It 
provides engineers and researchers with a robust platform to optimize 
process units and supply chains concurrently, ensuring solutions are 
theoretically sound and practically feasible. The results show that the 
direct separation sequence is better both economically and environ
mentally than the indirect separation sequence; this is because the in
direct sequence requires a greater amount of energy in the reboiler to 
achieve the required separation, which directly impacts on a higher cost 
and a greater impact on the environment. This integrated approach 
represents a significant advancement in the field, paving the way for 
more sophisticated and effective optimization techniques in chemical 
process engineering.
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